DS1162b



#### Features:

- Approved and listed by LPCB for automated sprinkler systems
- 150-12,500 dm<sup>3</sup>/min range
- Easy and quick installation
- Flanged or Victaulic™ connections available
- Instantaneous reading
- Best in class flow ranges



#### **Description:**

The Shunt Gapmeter Model LPCB is approved for regular monitoring and testing of sprinkler by the Loss Prevention Certification Board (LPCB) under their 'Rules for Automatic Sprinkler Installations', in the UK, and by many equivalent organisations in other countries.

The LPCB model flowmeter provides a compact, robust and direct reading for 50mm-200mm diameter pipelines and is suitable for use in horizontal and vertical pipes.



DS1162b



### **Standard Specification**

Orifice Plate Stainless Steel mounted in a 38mm thick, red polyester coated steel carrier ring.

Measuring tube Borosillicate glass with 100mm fused-in-ceramic scale

Float Stainless Steel

Accuracy +/- 5% at various test flows specified by LPCB

**'O' Seals** Nitrile

**Indicator housing** Aluminium extrusion with plastic protection cover

**Inpulse pipe** Bright nickel plated copper with plated brass connectors

Isolating valves Full bore (8mm) brass ball valves bright nickel plated

**Drain/Bleed Valves**Brass, bright nickel plated **Rodding device**Brass, bright nickel plated

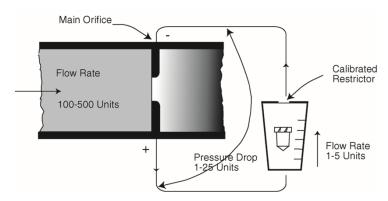
Filter Unit 316 stainless steel, Perspex™ housing, plated brass connections and nitrile 'o' rings

Temperature Limitation 80 °C

Pressure Limitation 12 bar @ 20 °C
Pressure Test 30 bar hydraulic

Pressure Drop At max flow rate 65% of the orifice pressure loss of 354"WG is recovered

**Installation** As per OMM1003


Approval Units approved by LPCB

LPCB Listing Approved Fire and Security products and Services part 3, Automatic Sprinkler, Water Spray and

Deluge Systems, Section 6: Direct reading flowmeters.

#### PRINCIPLE OF OPERATION

The shunt gapmeter model Mk3 LPCB is a combination of two simple measuring elements. In the main flow line an orifice plate is inserted, producing a pressure drop related to flow rate. Across the orifice plate, a shunt or bypass loop uses this pressure drop to create a small flow through a similar orifice restrictor and a variable area flowmeter. The flow in the bypass VA meter is proportional to the main line flow and special scaling on the glass tube allows the main line flow to be measured directly.



#### **SPECIAL FEATURES**

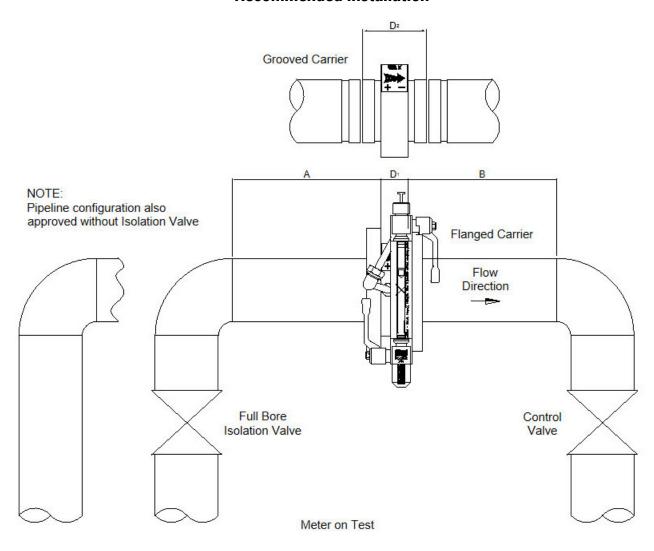
- Full bore isolating valves for meter isolation, filter cleaning or flow tube replacement.
- In-line filter avoids clogging of the bypass line or the flow restrictor with pipe debris. 'Rodding device' allowing the clearance of debris or algae from the orifice bypass restrictor.
- The flow tube is replaceable on-site.

DS1162b



### Flow Ranges and Order Codes

| Flanged Carrier Refs |         | Grooved Carrier Refs |         | Nominal<br>Pipe size | Flow<br>ranges | Test<br>flows        | Accuracy<br>@Test<br>flows dm <sup>3</sup> / | *The LPCB ref.<br>No appears on<br>the Carrier                   |
|----------------------|---------|----------------------|---------|----------------------|----------------|----------------------|----------------------------------------------|------------------------------------------------------------------|
| LPCB*                | Platon~ | LPCB*                | Platon~ | (mm)                 | dm³/min        | dm³/min              | min                                          | only                                                             |
| 088b/01              | F1/15   | 088b/06              | F1/20   | 50                   | 150-750        | 500                  | +/-25                                        | ~ The Platon<br>ref. No appears                                  |
| 088b/02              | F1/16   | 088b/07              | F1/21   | 80                   | 300-2300       | 800<br>1300          | +/-40<br>+/-65                               | on both the<br>Carrier and<br>Tube                               |
| 088b/03              | F1/17   | 088b/08              | F1/22   | 100                  | 500-3500       | 1500<br>2200         | +/-75<br>+/-110                              | Also, the Tube and float as-                                     |
| 088b/04              | F1/18   | 088b/09              | F1/23   | 150                  | 900-8200       | 2500<br>3500<br>4500 | +/-125<br>+/-175<br>+/-175                   | semblies of a<br>particular NB<br>are universal<br>between the 2 |
| 088b/05              | F1/19   | 088b/10              | F1/24   | 200                  | 2500-<br>12500 | 5000<br>7000<br>9000 | +/-250<br>+/-350<br>+/-450                   | carrier styles.                                                  |


The recommended minimum lengths of pipework upstream ('A') and down-stream ('B') of the meter are shown below:

| Meter Size |     | 50mm  | 80mm  | 100mm | 150mm | 200mm  |
|------------|-----|-------|-------|-------|-------|--------|
| Upstream   | 'A' | 250mm | 400mm | 500mm | 750mm | 1000mm |
| Downstream | 'B' | 250mm | 400mm | 500mm | 750mm | 1000mm |

DS1162b



### **Recommended Installation**



DS1162b



| Revision | Change Description | ECN    | Date         | Approved |
|----------|--------------------|--------|--------------|----------|
| Α        | Initial Release    | xxxxxx | October 2023 | A Royles |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |
|          |                    |        |              |          |